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Intended use

Users 
• Equipment manufacturers, design firms, academia. 
• Engine for “Spawn of EnergyPlus” HVAC and controls 
• Model-based design process (e.g., FLEXLAB). 
• FDD algorithms (ongoing for DoD). 
• Simulation engine for http://www.learnhvac.org and http://www.learngreenbuildings.org  

License 
• All development is open-source under Modelica 2.0 license (similar than BSD).
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http://www.learnhvac.org
http://www.learngreenbuildings.org


Objectives

For Spawn of EnergyPlus 
• modular models for controls and HVAC 

For building designers and manufacturers 
• open-source, free library of component and system models 
• collection of case studies and demonstrations 

For researchers and manufacturers 
• library and tools for rapid virtual prototyping and model-based 

design 

For simulation tool developers 
• collaborative environment 
• software components with liberal open-source license, vetted 

by experts from around the world
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User guide with best practice.



Scope
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Air-based HVAC Hydronic heating Chiller plants

Natural ventilation,  
multizone air exchange,  
contaminant transport

Room heat transfer, 
incl. window (TARCOG) 

Solar collectors

Embedded Python

Electrical systemsRoom air flow

500+ validated component models. 
Free, open-source. 
http://simulationresearch.lbl.gov/modelica

FLEXLAB

http://simulationresearch.lbl.gov/modelica


Example application
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4 IMPLEMENTATION 10

we implemented

Dh , Q̇ f(ṁd, ṁ), (2)

with

f(d, x) ,

8
<

:
p(d, x), for x 2 [�d, d],

1/x, otherwise,
(3)

where f : R ⇥ R ! R is a twice continuously differentiable function
that is bounded on compact sets. We constructed the function p : R ⇥
R ! R in such a way that it satisfies

p(d, x) = �p(d, �x), (4a)

p(d, d) = 1/d, (4b)

p0(d, d) = �1/d2, (4c)

p0(d, 0) 6= 0, (4d)

p00(d, d) = �2/d3, (4e)

where p0(·, ·) and p00(·, ·) denote the first and second order par-
tial derivatives with respect to the second argument. The condition
p0(d, 0) 6= 0 has been selected to avoid that the first derivative van-
ishes at the origin, because a Newton solver that solves p(d, x) = 0
for x may compute the sequence xn+1 = xn � p(d, xn)/p0(d, xn).
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Figure 1: Plot of d f(d, x).

The function that we selected and that satisfies (4) is

p(d, x) , x
d2 + x

����
2
d3 x � 3

d5 x3 +
1
d7 x5

���� . (5)

Figure 1 shows the graph of this function. The term x/d2 is used to
ensure that the first derivative is non-zero around a neighborhood of
x = 0, and therefore by the Implicit Function Theorem, there exists
in a neighborhood of the origin an inverse function p�1(d, ·) that is
differentiable.41 41 Polak, E. (1997). Optimization, Algo-

rithms and Consistent Approximations,
Volume 124 of Applied Mathematical
Sciences. Springer Verlag

Note that in (2), for ṁ(t) 2 (�ṁd, ṁd) \ {0}, energy is not con-
served. Therefore, ṁd should be chosen small. However, ṁd should
not be too small compared to the design mass flow rate, as this will
cause f(ṁd, ṁ) to be large in magnitude near ṁ ⇡ ±ṁd, which may
lead to problems for numerical solvers. The default setting in the
Buildings library is ṁd = 10�7 ṁ0, where ṁ0 is the design mass flow
rate. At this low mass flow rate, the impact on the energy consump-
tion is negligible.

To assist component model developers in the regularization of
these functions, the package Buildings.Utilities.Math provides
differentiable approximating functions for many formulations.42 42 Note that Modelica simulation en-

vironments can in general properly
handle non-differentiabilities. How-
ever, a numerically sound treatment
requires an event iteration that is com-
putationally costly. When formulating
equations for physical phenomena, we
therefore replaced non-differentiable
equations with approximations that are
continuously differentiable.

Legend: 
Library developer 
Component developer 
End user



Main modeling assumptions

Media 
 
HVAC equipment  
 
 
 
 
Flow resistances  
 
 
Room model 
 
 
 
Electrical systems  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Can track moisture (X) and contaminants (C).  
 
Most equipment based on performance curve, or based on 
nominal conditions and similarity laws. 
Refrigerant is not modeled. 
Most equipment optional steady-state or 1st order transient.  
 
Based on m_flow_nominal and dp_nominal plus similarity law. 
Optional flag to linearize or to set dp=0.  
 
Any number of constructions are possible. 
Layer-by-layer window model (similar to Window 6). 
Optional flag to linearize radiation and/or convection. 
 
DC. 
AC 1-phase and 3-phase (dq, dq0).  
Quasi-stationary or dynamic phase angle (but not frequency).



Special modeling approach

All equations of physical systems are once 
continuously differentiable.  
 
 
 
Special treatments to avoid numerical problems if 
m_flow is in neighborhood around 0.  
 
 
 
 
 
 
Fan/pump model for which we can prove existence of 
unique solution. 
See paper at Building Simulation 2013.
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ever, a numerically sound treatment
requires an event iteration that is com-
putationally costly. When formulating
equations for physical phenomena, we
therefore replaced non-differentiable
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continuously differentiable.

�h =
Q̇

ṁ
⇡ Q̇�(ṁ�, ṁ)

max(r(t), 0.001/N0). However, this introduces
a non-differentiability at r(t) = 0.001/N0. Moreover,
it causes �p(r(t),

˙

V (t)) to be non-zero even if
˙

V (t) = 0 and r(t) = 0. Hence, the fan cannot be
switched off completely, and volume flow occurs even
if the HVAC system is off. This may introduce outside
air when heaters are off, thereby causing subfreezing
temperatures in heat exchangers which in turn can
cause the simulation to stop. The third point has
been shown to cause two solutions to exist for certain
configurations of flow networks and fan curves. This
caused non-physical results and divergence of the
solver.

Implementation in Buildings Library 0.12
We will now explain how the first two problems were
avoided in the Buildings library version 0.12. We will
then explain why the new implementation was also
not robust. Finally, after this section, we will explain
how we reimplemented the fan model to circumvent
all three problems.

In the Buildings library version 0.12, the first two
problems are avoided by reformulating (3) as

�p(r(t),

˙

V (t)) = c1 r(t)
2
+ c2 r(t)

˙

V (t), (4a)
�p(r(t),

˙

V (t)) = c1 r(t)
2
+ c2 r(t)

˙

V (t)

+c3
˙

V

2
(t), (4b)

�p(r(t),

˙

V (t)) =

nX

i=1

c

i

r(t)

n�i

˙

V

i�1
(t),

for n � 4. (4c)

This implementation has shown to be numerically
problematic in a large system model in which the fan
curve was modeled as a linear function.2 The reason
was that Dymola selected ˙

V (t) as an iteration vari-
able, and computing r(t) and �p(r(t),

˙

V (t)) required
an iterative solution, i.e., they were approximated us-
ing some r

⇤
(✏, t) and some �p

⇤
(✏, t). The governing

equation was

˙

V

⇤
(✏, t) =

�p

⇤
(✏, r

⇤
(✏, t),

˙

V

⇤
(✏, t)) � r

⇤
(✏, t)

2
c1

r

⇤
(✏, t) c2

⇡ �p

⇤
(✏, r

⇤
(✏, t),

˙

V

⇤
(✏, t))

r

⇤
(✏, t) c2

. (5)

Thus, computing ˙

V

⇤
(✏, t) required dividing numerical

noise by numerical noise.
Moreover, since, in the system model, the fans were
connected as shown in Figure 2, the fluid volumes
of two fan models were coupled. Due to the model
parameterization, multiple volumes were connected
without a flow resistance in between, forming a se-
quence of connected volumes. Within this sequence,
the mass flow rate became oscillatory and unstable, as

2This problem was observed in https://corbu.lbl.

gov/svn/bie/branches/mwetter/dev-zeroFlow/

bie/modelica/Buildings, revision 2721.
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Figure 3: Instability of ṁ(t)/ṁ0 for the fan inlet mass

flow rate at location (a) in Figure 2.

shown in Figure 3, because at r = 0 (and �p = 0),
any value of ˙

V (t) satisfied the governing equation (4a)
for the fan in the lower flow path. That is, there were
an infinite number of solutions to (4a)! Not surpris-
ingly, this eventually led, for the fan configuration
shown in Figure 2, to the oscillatory behavior shown
in Figure 3. Consequently, the solver stalled as it was
required to make very small time steps to control the
integration error of the conservation equations of the
volumes that participated in the mass exchange shown
in Figure 3.

We note that this oscillatory behavior is avoided in
CONTAM 3.0 by replacing the fan model with an ori-
fice model if the control signal satisfies r(t)  � for
some 0 < � < 1. We did not use this approach as
it would yield a hybrid model. Switching from one
model to another leads to a state event that can increase
the simulation time. Furthermore, if r(t) is the output
of a controller whose input depends on the fan volume
flow rate, then the following problems can occur: For
an algebraic hybrid model, there may not be a solution.
For a dynamic hybrid model, the dynamics can intro-
duce oscillatory behavior (chattering) which in turn
can cause very slow progress of the time integration.
As an example, consider the contaminant problem be-
low that describes a volume with fresh air supply, con-
stant contaminant source and feedback control on the
fresh air supply flow rate. Let

V

dC(t)

dt

=

(
˙

C

s

, if u(t) < 0.2,

˙

C

s

� ˙

V C(t)u(t), otherwise,
(6a)

C(0) = 0, (6b)
u(t) = K

p

C(t), (6c)

where V = 1m

3 is the control volume, C(·)
is the contaminant concentration in kg/m

3, ˙

C

s

=

0.999 kg/s is a contaminant source, K
p

= 0.2m

3
/kg

is a control gain, ˙

V = 5m

3
/s is the fan volume flow

rate and u(·) is the fan control input. By (6a), the
fan only operates if the control input signal satisfies
u(t) � 0.2. The control law has no hysteresis.
When simulated in Dymola 2013 FD01, which has
event detection, and the DASSL solver is used, which
is an adaptive time step solver, C(t) increases to
1 kg/m

3 at t = 1 s, and then the control u(t) chatters,
causing the simulation to make very slow progress.

http://simulationresearch.lbl.gov/wetter/download/2013-IBPSA-Wetter.pdf


Validation

Room model: ANSI/ASHRAE 140. 

Window model: Window 6 plus full-scale experiments. 

Comparative model validation for 

- Window model (Window 6) 

- Multizone air exchange (CONTAM) 

- DX coils (EnergyPlus) 

- Solar collectors (TRNSYS) 

Where possible, all components were verified with analytical solutions. 

500+ regression tests compare results to reference results as part of development, 
see https://github.com/lbl-srg/modelica-buildings/wiki/Unit-Tests 
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https://github.com/lbl-srg/modelica-buildings/wiki/Unit-Tests


Documentation and distribution

Documentation 
• General user guide (getting started, best practice, 

developer instructions, ...). 
• 14 user guides for individual packages. 
• 2 tutorials with step-by-step instructions. 
• All models contain “info” section. 
• Small test models for all classes,  

large test cases for “smoke tests,” 
and various validation cases. 

Distribution 
• Main site 

http://simulationresearch.lbl.gov/modelica 
• Development site with version control, wiki and issue tracker:  

https://github.com/lbl-srg/modelica-buildings 
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http://simulationresearch.lbl.gov/modelica/userGuide/
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide.html#Buildings.UsersGuide
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Examples_Tutorial.html
http://simulationresearch.lbl.gov/modelica
https://github.com/lbl-srg/modelica-buildings


Collaborative development within IEA  
EBC Annex 60

Goal of activity 1.1 (library development): 
Develop and distribute a well documented, vetted and validated open-source Modelica library 
that serves as the core of future building simulation programs.
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Annex60'

Controls'
Fluid'
Media'
U5li5es'

Base'Classes'

AixLib'

House'
HVAC'
Ci5es'

RWTH'Aachen'

BuildingSystems'

HVAC'
Solar''

Building'
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Buildings'

HVAC'
Controls'
Building'

LBNL'USA'

OpenIDEAS'

District'
Building'
HVAC'

KU'Leuven'

…' …' …' …'

Development at https://github.com/iea-annex60/modelica-annex60 

https://github.com/iea-annex60/modelica-annex60


Example Applications
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AC grid

Virtual prototyping through graphical modeling of  
multi-physics systems
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DC renewable plantDC renewable plant AC grid

Cooling plantFeedback control

   
 

big clockwise circulation in the center of the room due 
to the strong inertial force. Some small circulations 
occur near the wall corners due to the wall influence. 
The temperature distribution is highly non-uniform due 
to the interaction of the buoyancy force and inertial 
force. 
Figure 10 shows the data obtained from Modelica. The 
air temperature and velocity at the room center (0.5 m, 
0.5 m, 0.5 m) are computed by FFD and sent to 
Modelica as sensor data. The results now show, that the 
temperature and velocity at the room center steadily 
increases due to the floor heating and ventilation until 
the flow in the space has fully developed at around 40 
seconds. These values oscillate due to the unsteady 
flow. 

Figure 9 Velocity vectors and temperature contour of 
the mixed convection on a cross-section at y = 0.5m 

computed by FFD 
Modelica also computes the heat flow rates at the heat 
port of the heat sources connected to the walls. The heat 
flow rate through the port of the heat source connected 
to the floor is negative because heat is leaving the heat 
port. The highest heat flow rate appears at t = 0 seconds 
when the largest temperature difference occurs. The 
heat flow rates through the ports of the heat sources 
connected to the west and east walls are positive since 
their temperatures are lower than the room air 
temperature. 

CONCLUSION 
We implemented and validated a coupled simulation 
between FFD and the Modelica Buildings library. The 
results show that the coupled simulations can simulate 
the dynamic interaction between the indoor 
environment and the building envelope faster than real 
time. Performing the FFD simulation in parallel using 

graphics processing units or multicore CPUs could 
further reduce the simulation time (Zuo et al., 2010a), 
although we have not yet implemented this code for our 
coupled simulation. To further evaluate the 
performance of the coupled simulation, the next step is 
to conduct a case study that includes feedback loop 
control between the room air and the HVAC system. 

Figure 10 Temperature and air velocity at the room 
center, heat flow rates through the heat ports of the 
heat sources that connect to the walls in the mixed 

convection  
 

NOMENCLATURE 
g Acceleration due to gravity 
ሶ݉  Mass flow rate 
 തതതത Averaged Nusselt numberݑܰ
ሶܳ  Heat flow rate 
ሶݍ  Heat flux 
Ra Rayleigh number 
ܵ Surface area 
ܶ Temperature 
 Time ݐ
 Velocity ݑ
V Volume 
β Thermal expansion coefficient 
ν  Kinematic viscosity 
Subscripts: 
in Inlet 
n Normal to the surface 
out Outlet 
sur Solid surface 
sou Source 

ACKNOWLEDGMENTS 
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Temperature 
stratification 
based on CFD



Modeling of hydronic systems
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ordinary differential 
equation

algebraic equations

state graph

algorithmic code

state events

spatially discretized PDE

acausal schematic diagram

block-diagram

The above model is composed hierarchically, partially through automatic generation, of 1700 component 
models.



Fault detection based on design models under consideration of  
uncertainties
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Library of models

FMUModel compliant with 
Functional Mockup 
Interface standard

Design phase

Fault detection 
and diagnosis

F(x',x,y,p)=0

Sensor & energy 
measurements

Fix faults

Estimation of fault 
parameters in real-time

Notify faults

Simulation model

SIMULATION PROGRAM / PLATFORM
Experts and 
designers

Construction

Maintenance and 
operators

DESIGN

OPERATION



FDD applied 
to district chilled 
water plant
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Campus 
20 buildings

Lejeune 
3 chillers 

Rickover  
3 chillers

CHWS

CHWR

CHWS

CHWR



FDD applied to district chilled water plant
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User-interface

Underlying analysis 
model



Structure of the library
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Organization of the main packages
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Buildings 
  Airflow 
    Multizone 
  BoundaryConditions 
    SolarGeometry 
    SolarIrradiation 
    SkyTemperature 
    WeatherData 
  Controls 
    Continuous 
    DemandResponse 
    Discrete 
    Predictors 
    SetPoints 
  Electrical 
    {AC, DC} 
  Fluid 
    Actuators 
    Boilers 
    Chillers 
    FixedResistances 
    HeatExchangers 
    … 

   
  HeatTransfer 
    Conduction 
    Convection 
    Radiosity 
    Windows 
  Rooms 
    CFD 
    MixedAir 
  Utilities 
    Comfort 
    Math 
    Psychrometrics 

  Resources 
    C-Sources 
    Data 
    Documentation 
    Include 
    Library 
    ReferenceResults 
    Scripts 
    bin 
    src 
    weatherdata 



Organization of individual packages

Packages are typically structured as shown on 
the right. 

To add a new class, look first at Interfaces 
and BaseClasses. 

You probably will never implement a component 
without extending a base class, such as from 
Buildings.Fluid.Interfaces

20

Tutorial 
UsersGuide 

Any other classes (models, 
functions etc.) 

Data 
Types 
Examples 
Validation 
Benchmarks 
Experimental 
Interfaces 
BaseClasses 
Internal 
Obsolete 



Best practice and modeling 
hints

21



Building large system models

How do you build and debug a large system model? 

1. Split the model into smaller models. 

2. Test the smaller models for well known conditions. 

3. Add smaller models to unit tests. 

For example, see Chiller Plant 

Each small models contains a simple unit test.
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http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_Examples_ChillerPlant_BaseClasses_Controls.html#Buildings.Examples.ChillerPlant.BaseClasses.Controls


Use small unit tests, as in

23

Chiller plant 
base classes

Pumps

http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_Examples_ChillerPlant_BaseClasses_Controls_Examples.html#Buildings.Examples.ChillerPlant.BaseClasses.Controls.Examples
http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_Fluid_Movers_Validation.html#Buildings.Fluid.Movers.Validation.FlowControlled_dp


Propagate common parameters

24

Pump pum(m_flow_nominal=0.1) "Pump"; 
TemperatureSensor sen(m_flow_nominal=0.1) "Sensor";

Modelica.SIunits.MassFlowRate m_flow_nominal = 0.1 
  "Nominal mass flow rate"; 
Pump pum(final m_flow_nominal=m_flow_nominal) "Pump"; 
TemperatureSensor sen(final m_flow_nominal=m_flow_nominal) "Sensor";

Modelica.SIunits.HeatFlowRate QHea_nominal = 3000 
  "Nominal heating power"; 
Modelica.SIunits.TemperatureDifference dT = 10 
  "Nominal temperature difference"; 
Modelica.SIunits.MassFlowRate m_flow_nominal = QHea_nominal/dT/4200 
  "Nominal mass flow rate"; 
...

Don't assign values to the same parameters

Instead, propagate parameters 

Assignments can include computations, such as 



Always define the media at the top-level
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Top-level system-model

Propagate medium to instance of model 

Note: For arrays of parameters, use the each keyword, as in

replaceable package Medium = Buildings.Media.Air 
  "Medium model";

TemperatureSensor sen( 
  redeclare final package Medium = Medium, 
  final m_flow_nominal=m_flow_nominal) "Sensor";

TemperatureSensor sen[2]( 
  each final m_flow_nominal=m_flow_nominal) 
"Sensor"; 



Exercise 1: Propagate parameters and media

Common parameters are design flow rates for 

• air, 

• water and 

• condenser loop. 

Common media are air and water for chiller and condenser 
loop. 

Find where common parameters are used and propagated 
in 
Buildings.Examples.ChillerPlant.DataCenterDiscreteTimeCon
trol 

Find where air mass flow rate in air/water heater exchanger 
is propagated. 

(Hint: In Dymola, you can expand all inherited classes.)
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http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_Examples_ChillerPlant.html#Buildings.Examples.ChillerPlant.DataCenterDiscreteTimeControl


Exercise 2: Modeling of a simple thermofluid flow system

How do you implement a source and boundary condition with a tank in between to create the 
model below:

27



Exercise 2: Modeling of a simple thermofluid flow system

1. Make instances using models from Buildings.Fluid.Sources and 
Buildings.Fluid.MixingVolumes. 

2. Assign the parameters. 

3. Check and simulate the model.

28



Further resources

Tutorials 
• Buildings.Examples.Tutorial 

User guides 
• User guides for specific packages of models. 
• User guide with general information. 

29

http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_Examples_Tutorial.html#Buildings.Examples.Tutorial
http://simulationresearch.lbl.gov/modelica/releases/v2.0.0/help/Buildings_UsersGuide.html#Buildings.UsersGuide
http://simulationresearch.lbl.gov/modelica/userGuide/


Setting a reference pressure

30

Underdetermined model as no pressure is assigned

Well defined model, but additional state for pressure as 
reservoir p/p0=V0/p

Most efficient model as reservoir p is constant



Modeling of fluid junctions
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In the model on the right, mixing 
takes place in the fluid port B 
because the boiler, port A and 
port C all connect to port B.



Avoid oscillations of sensor signal

32

Correct use because

Incorrect, as sensor output oscillates if 
mass flow rate changes sign. 
This happens for example if the mass 
flow rate is near zero and approximated 
by a solver. 

See also User Guide.

⌧
dT

dt
=

|ṁ|
ṁ0

(✓ � T )

http://simulationresearch.lbl.gov/modelica/userGuide/bestPractice.html#use-of-sensors-in-fluid-flow-systems


Avoid events
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This triggers events:

T_in = if port_a.m_flow > 0  then port_a.T else port_b.T;

Avoid events using regularization:
T = Modelica.Fluid.Utilities.regStep( 
      x = port_a.m_flow,  
      y1 = T_a_inflow,  
      y2 = T_b_inflow, 
      x_small = m_flow_nominal*1E-4);

See also User Guide.

http://simulationresearch.lbl.gov/modelica/userGuide/bestPractice.html#avoiding-events


Beware of oscillating control

34

If the control input oscillates around 
zero, then this model stalls

What happens if this model is 
simulated with an adaptive time 
step?

model Test 
  Real x(start=0.1); 
equation 
  der(x) = if x > 0 then -1 else 1; 
end Test;



Setting of nominal values is important for scaling of residuals

If pressure is around 1E5 Pa, set p(nominal=1E5). 

In Dymola, nominal values will be used to scale the residuals, such as in dsmodel.c: 

In Dymola, the local integration error is 

ϵ ≤ trel |xi| + tabs 

where the absolute tolerance is scaled with the nominal value as 

tabs = trel |xnom
i|.
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{ /* Non-linear system of equations to solve. */ 
  ... 
const char*const varnames_[]={"floMac1.VMachine_flow", 
                              "floMac2.VMachine_flow"}; 
const double nominal_[]={0.001, 0.001}; 
...



Development
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Overview

Main topics 

• Coding style and conventions 

• Requirements 

• Organization of the library 

• Adding a new model 

• Adding regression tests 

Further literature 

• User Guide -> Development 

• Style guide 

• Coding convention
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http://simulationresearch.lbl.gov/modelica/userGuide/development.html
https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide
http://www.apple.com


Coding style and conventions

Based on Modelica Standard Library. 

Most variables are 3 letter camel case to avoid too long names. 

Code duplication avoided where practical. 

Additional information at 
https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide and  
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide.html 
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https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide.html


Requirements

Physical requirements 

Mathematical requirements
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https://github.com/lbl-srg/modelica-buildings/wiki/Functional-Requirements#physical-resolution
https://github.com/lbl-srg/modelica-buildings/wiki/Style-Guide#equations-and-algorithms


Organization of individual packages

Packages are typically structured as shown on 
the right. 

To add a new class, look first at Interfaces 
and BaseClasses. 

You probably will never implement a component 
without extending a base class, such as from 
Buildings.Fluid.Interfaces
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Tutorial 
UsersGuide 

Any other classes (models, 
functions etc.) 

Data 
Types 
Examples 
Validation 
Benchmarks 
Experimental 
Interfaces 
BaseClasses 
Internal 
Obsolete 



Implementing new thermofluid flow devices
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Buildings.Fluid.Interface provides base classes. 

Buildings.Fluid.Interface.UsersGuide describes these classes. 
  

Alternatively, simple models such as the models below may be used as a 
starting point for implementing new models for thermofluid flow devices: 

Buildings.Fluid.HeatExchangers.HeaterCooler_u 
    For a device that adds heat to a fluid stream. 

Buildings.Fluid.MassExchangers.Humidifier_u 
    For a device that adds humidity to a fluid stream. 

Buildings.Fluid.Chillers.Carnot 
    For a device that exchanges heat between two fluid streams. 

Buildings.Fluid.MassExchangers.ConstantEffectiveness 
    For a device that exchanges heat and humidity between two fluid streams. 

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Interfaces.html
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Interfaces_UsersGuide.html
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_HeatExchangers.html#Buildings.Fluid.HeatExchangers.HeaterCooler_u
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_MassExchangers.html#Buildings.Fluid.MassExchangers.Humidifier_u
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_Chillers.html#Buildings.Fluid.Chillers.Carnot
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_MassExchangers.html#Buildings.Fluid.MassExchangers.ConstantEffectiveness


Adding a heat exchanger
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See HeaterCooler_u

within Buildings.Fluid.HeatExchangers; 

model HeaterCooler_u "Heater or cooler with prescribed heat flow rate" 
  extends Buildings.Fluid.Interfaces.TwoPortHeatMassExchanger( 
    redeclare final Buildings.Fluid.MixingVolumes.MixingVolume vol( 
      prescribedHeatFlowRate=true)); 

  parameter Modelica.SIunits.HeatFlowRate Q_flow_nominal 
    "Heat flow rate at u=1, positive for heating”; 

  Modelica.Blocks.Interfaces.RealInput u "Control input"; 
  Modelica.Blocks.Interfaces.RealOutput Q_flow(unit="W") 
    "Heat added to the fluid”; 

protected 
  Buildings.HeatTransfer.Sources.PrescribedHeatFlow preHea 
    "Prescribed heat flow"; 
  Modelica.Blocks.Math.Gain gai(k=Q_flow_nominal) "Gain"; 

equation 
  connect(u, gai.u); ... // other connect statements 
  annotation (...);      // documentation 
end HeaterCooler_u;

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Fluid_HeatExchangers.html#Buildings.Fluid.HeatExchangers.HeaterCooler_u


Add examples and validations to unit testing framework
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1. Add validation and stress tests for different model 
configurations. 

 
 

2. Validate results and add main outputs to plot script. 
These variables become part of the regression tests.  

3. Run 
    modelica-buildings/bin/
runUnitTests.py 

4. Update Buildings/package.mo release notes. 

5. Issue pull request on https://github.com/lbl-srg/
modelica-buildings. 

See Unit Test documentation.

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_UsersGuide_ReleaseNotes.html
https://github.com/lbl-srg/modelica-buildings
https://github.com/lbl-srg/modelica-buildings/wiki/Unit-Tests


?
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